
Multinail Nail On Plate

Strong timber connector for joining timber members.

Benefits of Nail On Plate

These pre-punched and formed galvanised steel timber connectors are ideal for:

- Joining timber side by side and butting timber members together
- Formwork, house frames and joining wall frames at top plate level
- Strengthening and repairing timber structures on-site
- Made in Australia

Installation

- 1. Nail On Plates are to be located on both the front and back faces of the joint, except for specific remedial applications, e.g. rectification for missing a nailplate on one side of the joint.
- 2. 30mm x ø2.8 Multinail nails are to be located in every second row of the plate. The number of nails required can be determined by the load carried, divided by the values listed in the following Limit State Design Capacity tables. Place effective nails as per minimum nail edge, end, and spacing distance requirements.
- 3. 30mm Black Tip #14 screws can be used in the alternate rows as per minimum screw edge, end and spacing distance requirements.
- 4. Nails or screws on the opposite side of the joint should be staggered.

Note:

For nail-to-screw substitution, 1/Black Tip #14 screw may be substituted for every 3/ø2.8 Multinail nails in timber member Joint Groups of JD3 and JD4; 2/Black Tip #14 screws may be substituted for every 5/ø2.8 Multinail nails in timber member Joint Groups of JD5.

Figure 1: Vertical laminated members with Nail On Plate

Figure 2: Butt joining members with Nail On Plate

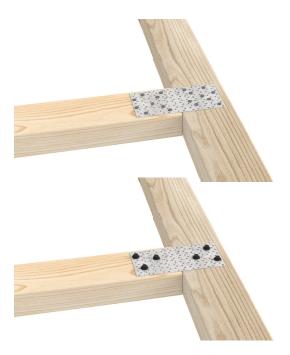


Figure 3: Truss or frame members joined with Nail On Plate

Limit State Design Capacity - Nail Option

Table 1

	per Effective¹ ø2.8 Multinail nail (kN)						
Timber Joint Group	Dead Load	Dead Load + Roof Live Load	Dead Load + Wind Load				
J2	0.45	0.61	0.90				
J3	0.32	0.44	0.64				
J4	0.23	0.31	0.46				
JD3	0.45	0.61	0.90				
JD4	0.32	0.44	0.65				
JD5	0.26	0.36	0.53				

Note:

- 1. Effective nails require the following edge, end and spacing distance requirements:
 - Nails must be placed no closer than 56mm along the grain.
 - Nails must be placed no closer than 15mm across the grain.
 - The minimum nail distance to edge of timber is 15mm.
 - The minimum nail distance to end of timber is 56mm.

Limit state design capacities are obtained from laboratory testing and derived from AS1720.1 for houses where failure is unlikely to affect an area greater than $25m^2$. For primary elements in structures other than houses or elements in a house for which failure would be greater than $25m^2$ these capacities must be multiplied by 0.94. For primary joints in essential services or post disaster buildings multiply by 0.88.

Limit State Design Capacity - Screw Option

Table 2

	per Effective¹ 30mm Black Tip #14 screw (kN)						
Timber Joint Group	Dead Load	Dead Load + Roof Live Load	Dead Load + Wind Load				
J2	1.40	1.61	1.61				
J3	1.00	1.35	1.61				
J4	0.71	0.96	1.41				
JD3	1.40	1.61	1.61				
JD4	1.00	1.35	1.61				
JD5	0.71	0.96	1.41				

Note:

- 1. Effective screws require the following edge, end and spacing distance requirements:
 - Screws must be placed no closer than 63mm along the grain.
 - Screws must be placed no closer than 20mm across the grain.
 - The minimum screw distance to edge of timber is 32mm.
 - The minimum screw distance to end of timber is 63mm.

Limit state design capacities are obtained from laboratory testing and derived from AS1720.1 for houses where failure is unlikely to affect an area greater than $25m^2$. For primary elements in structures other than houses or elements in a house for which failure would be greater than $25m^2$ these capacities must be multiplied by 0.94. For primary joints in essential services or post disaster buildings multiply by 0.88.

Limit State Design Capacity – Steel (for a PAIR of Nail On Plates)

Table 3

	G300 Steel				
Plate Width W (mm)	Tension (kN)	Shear (kN)			
64	15.5	12.0			
75	18.4	14.2			
100	26.5	20.5			
125	30.7	23.7			
150	37.4	28.9			

Note

The total nail or screw capacities should not exceed the maximum steel capacities listed in Table 3.

Technical Specifications

St	eel	G300 Steel, Z275, 1mm Thickness											
1		0	0	0	0	0	0	0	0	0	0	0	0
		0	0	0	0	0	0	0	0	0	0	0	0
		0	0	0	0	0	0	0	0	0	0	0	0
		0	0	0	0	0	0	0	0	0	0	0	0
		0	0	0	0	0	0	0	0	0	0	0	0
W		0	0	0	0	0	0	0	0	0	0	0	0
٧٧		0	0	0	0	0	0	0	0	0	0	0	0
		0	0	0	0	0	0	0	0	0	0	0	0
		0	0	0	0	0	0	0	0	0	0	0	0
		0	0	0	0	0	0	0	0	0	0	0	0
		0	0	0	0	0	0	0	0	0	0	0	0
J	,	0	0	0	0	0	0	0	0	0	0	0	0
							ı	L					
	 									→			

Description and Packing

Product Code	Description W x L	Carton Qty	Pallet Qty	Carton kg.
TA107	64 x 150 x 1.0mm	100	50	8.3
TA103	75 x 150 x 1.0mm	50	90	5.0
TA98	75 x 200 x 1.0mm	50	90	6.6
TA265	75 x 375 x 1.0mm	20	90	5.0
TA108	100 x 200 x 1.0mm	50	50	8.8
TA109	125 x 150 x 1.0mm	50	50	8.2
TA100	125 x 200 x 1.0mm	50	50	11.0
TA101	150 x 200 x 1.0mm	30	50	8.0
NOP150350	150 x 350 x 1.0mm	20	-	9.3

Fixings			Ţ
TA302	30mm x 2.8Ø Multinail Nails		
TA233	30mm Black Tip Screw		

Multinail Australia Pty. Ltd.

155 Burnside Road, Stapylton QLD 4207, Australia Phone: +61 (0)7 3297 3250 Email: enquiry@multinail.com.au